Human aldose reductase expression accelerates diabetic atherosclerosis in transgenic mice.
نویسندگان
چکیده
Direct evidence that hyperglycemia, rather than concomitant increases in known risk factors, induces atherosclerosis is lacking. Most diabetic mice do not exhibit a higher degree of atherosclerosis unless the development of diabetes is associated with more severe hyperlipidemia. We hypothesized that normal mice were deficient in a gene that accelerated atherosclerosis with diabetes. The gene encoding aldose reductase (AR), an enzyme that mediates the generation of toxic products from glucose, is expressed at low levels in murine compared with human tissues. Mice in which diabetes was induced through streptozotocin (STZ) treatment, but not nondiabetic mice, expressing human AR (hAR) crossed with LDL receptor-deficient (Ldlr-/-) C57BL/6 male mice had increased aortic atherosclerosis. Diabetic hAR-expressing heterozygous LDL receptor-knockout mice (Ldlr+/-) fed a cholesterol/cholic acid-containing diet also had increased aortic lesion size. Lesion area at the aortic root was increased by STZ treatment alone but was further increased by hAR expression. Macrophages from hAR-transgenic mice expressed more scavenger receptors and had greater accumulation of modified lipoproteins than macrophages from nontransgenic mice. Expression of genes that regulate regeneration of glutathione was reduced in the hAR-expressing aortas. Thus, hAR increases atherosclerosis in diabetic mice. Inhibitors of AR or other enzymes that mediate glucose toxicity could be useful in the treatment of diabetic atherosclerosis.
منابع مشابه
Effects of polyol pathway hyperactivity on protein kinase C activity, nociceptive peptide expression, and neuronal structure in dorsal root ganglia in diabetic mice.
We explored the specific impact of polyol pathway hyperactivity on dorsal root ganglia (DRG) using transgenic mice that overexpress human aldose reductase because DRG changes are crucial for the development of diabetic sensory neuropathy. Littermate mice served as controls. Half of the animals were made diabetic by streptozotocin injection and followed for 12 weeks. After diabetes onset, diabet...
متن کاملPolyol pathway and diabetic nephropathy revisited: Early tubular cell changes and glomerulopathy in diabetic mice overexpressing human aldose reductase
UNLABELLED Aims/Introduction: The polyol pathway has long been involved in the pathogenesis of diabetic nephropathy. It remains still unclear, however, how the polyol pathway is implicated in this process. We explored the effects of the enhanced polyol pathway on renocortical tubular cells and glomeruli in experimentally-induced diabetes. MATERIALS AND METHODS Transgenic mice (Tg) overexpr...
متن کاملAldose Reductase Drives Hyperacetylation of Egr-1 in Hyperglycemia and Consequent Upregulation of Proinflammatory and Prothrombotic Signals
Sustained increases in glucose flux via the aldose reductase (AR) pathway have been linked to diabetic vascular complications. Previous studies revealed that glucose flux via AR mediates endothelial dysfunction and leads to lesional hemorrhage in diabetic human AR (hAR) expressing mice in an apoE(-/-) background. Our studies revealed sustained activation of Egr-1 with subsequent induction of it...
متن کاملReductive Metabolism of AGE Precursors: A Metabolic Route for Preventing AGE Accumulation in Cardiovascular Tissue
OBJECTIVE To examine the role of aldo-keto reductases (AKRs) in the cardiovascular metabolism of the precursors of advanced glycation end products (AGEs). RESEARCH DESIGN AND METHODS Steady-state kinetic parameters of AKRs with AGE precursors were determined using recombinant proteins expressed in bacteria. Metabolism of methylglyoxal and AGE accumulation were studied in human umbilical vein ...
متن کاملAldo-Keto Reductases in the Eye
Aldose reductase (AKR1B1) is an NADPH-dependent aldo-keto reductase best known as the rate-limiting enzyme of the polyol pathway. Accelerated glucose metabolism through this pathway has been implicated in diabetic cataract and retinopathy. Some human tissues contain AKR1B1 as well as AKR1B10, a closely related member of the aldo-keto reductase gene superfamily. This opens the possibility that A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 115 9 شماره
صفحات -
تاریخ انتشار 2005